Topical application of dynorphin A (1-17) antibodies attenuates neuronal nitric oxide synthase up-regulation, edema formation, and cell injury following focal trauma to the rat spinal cord.
نویسندگان
چکیده
Previous investigations from our laboratory show that up-regulation of neuronal nitric oxide synthase (NOS) following spinal cord injury (SCI) is injurious to the cord. Antiserum to dynorphin A (1-17) induces marked neuroprotection in our model of SCI, indicating an interaction between dynorphin and NOS regulation. The present investigation was undertaken to find out whether topical application of dynorphin A (1-17) antiserum has some influence on neuronal NOS up-regulation in the traumatized spinal cord. SCI was produced in anesthetized animals by making a unilateral incision into the right dorsal horn of the T10-11 segments. The antiserum to dynorphin A (1-17) was applied (1 : 20, 20 microL in 10 seconds) 5 minutes after trauma over the injured spinal cord and the rats were allowed to survive 5 hours after SCI. Topical application of dynorphin A (1-17) antiserum significantly attenuated neuronal NOS up-regulation in the adjacent T9 and T12 segments. In the antiserum-treated group, spinal cord edema and cell injury were also less marked. These observations provide new evidence that the opioid active peptide dynorphin A may be involved in the mechanisms underlying NOS regulation in the spinal cord after injury, and confirms our hypothesis that up-regulation of neuronal NOS is injurious to the cord.
منابع مشابه
Anti-Inflammatory Effect of the Epigallocatechin Gallate Following Spinal Cord Trauma in Rat
Background: Spinal cord injury (SCI) stimulates an inflammatory reaction that causes substantial secondary damage inside the injured spinal tissue. The purpose of this study was to determine the anti-inflammatory effects of epigallocatechin gallate (EGCG) on traumatized spinal cord. Methods: Rats were randomly divided into four groups of 12 rats each as follow: sham-operated group, trauma group...
متن کاملGrowth hormone attenuates alterations in spinal cord evoked potentials and cell injury following trauma to the rat spinal cord. An experimental study using topical application of rat growth hormone.
The influence of exogenous rat growth hormone on spinal cord injury induced alterations in spinal cord evoked potentials (SCEP) and edema formation was examined in a rat model. Repeated topical application of rat growth hormone (20microl of 1microg/ml solution) applied 30min before injury and at 0min (at the time of injury), 10min, 30min, 60min, 120min, 180min, and 240min, resulted in a marked ...
متن کاملDynorphin neurotoxicity induced nitric oxide synthase expression in ventral horn cells of rat spinal cord.
Nitric oxide (NO) mediation in the spinal cord injury induced by intrathecal (i.t.) dynorphin (Dyn) administration was studied with NADPH-diaphorase (Nd) histochemistry. Normally, there was rarely NO synthase (NOS) activity in spinal cord motomeurons, and Dyn A(1-17) 10 nmol, which produced only transient paralysis, did not induce Nd/NOS expression in ventral horn cells. After a paralyzing dose...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملIntracerebral administration of neuronal nitric oxide synthase antiserum attenuates traumatic brain injury-induced blood-brain barrier permeability, brain edema formation, and sensory motor disturbances in the rat.
The role of nitric oxide (NO) in traumatic brain injury (TBI)-induced sensory motor function and brain pathology was examined using intracerebral administration of neuronal nitric oxide synthase (nNOS) antiserum in a rat model. TBI was produced by a making a longitudinal incision into the right parietal cerebral cortex limited to the dorsal surface of the hippocampus. Focal TBI induces profound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta neurochirurgica. Supplement
دوره 96 شماره
صفحات -
تاریخ انتشار 2006